Utility Interconnection Equipment Certification

The information on this form is provided to indicate the compliance of the generation equipment listed below with the utility interconnection certification requirements defined in this Rule.

<u>Certifying Laboratory</u> The information on this form is provided by the following Nationally Recognized Test Laboratory:

Laboratory: <u>ITS – ETL Semko</u>
Contact Name: Michael Murphy Phone: 978-635-8538 E-mail: mmurphy@etlsemko.com
Address: 70 Codman Hill Road
City: Boxborough State: MA Zip: 02451
Accredited by:OSHA-NRTLDate:
Accredited to (test standards) ⁱ : _Federal Register 29 CFR 1910.7 ref: ISO Guide 25 and 28, UL1741
Equipment Specification The information on this form applies to the following equipment:
Equipment Manufacturer:Tecogen, Inc
Address: 45 First Avenue
City: Waltham State: MA Zip: 02451
Model Number(s): CM-60, CM-75 (High Voltage 460V and Low Voltage (208/230V)
Software Version(s): 6/14/02 or later
Effective ⁱⁱ :Serial Number 200648 or Later . Serial Numbers below this may be upgraded
in the field to comply if required.
Device Description ⁱⁱⁱ : The TECOGEN [®] is a packaged, indoor, cogeneration module that
produces both electricity and hot water. It's output rating is either 75kW or 60 kW, 3 phase,
208/230/460V. It uses a natural gas-fired internal combustion engine to drive an induction
generator. The heat from the high temperature (up to 230 °F) hot water produced by the engine
is recovered for building heat loads. With both the electrical and thermal energy produced by the
unit, the efficiency is 91% (based on the Lower Heating Value of Natural Gas).
Since the cogeneration unit is equipped with an induction generator, it runs in parallel with the
utility and requires power from the utility to operate.
The TECOGEN can meet all California air quality standards when equipped with the emission
control option. A microprocessor-based, closed-loop, feedback control system maintains tight control
over the air/fuel ratio. The rich-burn engine's exhaust is treated with a three-way or NSCR (Non-
Selective Catalyst Reduction) catalyst, designed to simultaneously reduce NO _x , CO, and HC levels

Date: 3/19/03

The Rule 21 Certification Verification Subcommittee has reviewed the antiislanding test results provided by Underwriter Laboratories for Tecogen Models CM75H, CM60H, CM75L and CM60L and has compared those results (UL File # E234051, dated 02/14/2003) to the requirements stated in the current published versions of Rule 21. Based on this review, the committee has verified compliance of the above named models with the Rule 21 requirements and established that these units are certified as Non-islanding for those sections of Rule 21 calling out such certification.

Participants in the Verification Subcommittee were:

Bill Cook, SDG&E Ed Grebel, SCE Jim Skeen, SMUD Scott Tomashefsky, CEC Mohammed Vaziri, PG&E Chuck Whitaker, Endecon from a natural gas engine. Emissions as low as 5 ppm NOx, 70 ppm CO, and 30 ppm NMHC (@15%O2) can be achieved.

Test Results iv

Mark the box next to each requirement that has been met and each test that has been performed and successfully passed. Provide an explanation of any exceptions or omissions on a separate sheet. List additional test documents used on a separate sheet.

⊠-39	$N/A^*-40.1$	$N/A^*-41.2$	⊠-44	⊠-45.2.2	⊠-45.4	N/A* 45.5
⊠-46.2	⊠-46.2.3	⊠-46.4	⊠-47.3	$N/A^* - 47.7$	Optional:	⊠-46.3

⊠-IEEE/ANSI C62.45/C62.41 (location Category B3)

California Rule 21: □-J.3.e Non-export N/A+ J-J.3.f In-Rush Current N/A* J.3.h Synchronization

Device Rating: 208/230/460 V, 3 phase, 60 Hz 1) 75 kW 245/224/112 A 2) 60 kW 200/181/99A Maximum available fault current, A 1) CM-75 1600/1448/724A 2) CM-60 1327A/1185A/593A In-rush current A Not applicable, uses natural gas engine to bring to speed Trip settings i:

208 VAC System Tested

Protective Function	Test Voltage / Frequency	Measured Clearing Time	Factory Setting (CA Only)	Adjustable Range	
Fast Under Voltage	59 Vrms ¹	0.03 seconds	104 Volts	93-203 Volts	
	(102.3 Volts)		0.16 Seconds	0.033-0.50 Seconds	
Slow Under Voltage	105 Vrms ¹	2 seconds	182 Volts	178-198 Volts	
	(182 Volts)		2 Seconds	0.5-3.0 Seconds	
Slow Over Voltage	133 Vrms ¹	0.440 seconds	229 Volts	218-248 Volts	
	(230.5 Volts)		0.5 Seconds	0.5-3.0 Seconds	
Fast Over Voltage	166 Vrms ¹	0.100 seconds	286 Volts	213-294 Volts	
	(287.7 Volts)		0.10 Seconds	0.033-0.50 Seconds	
Under Frequency	59.2 Hz	0.113 seconds	59.3 Hz	57.0-59.5 Hz	
			0.16 Seconds	0.033-0.50 Seconds	
Over Frequency	60.6 Hz	0.133 seconds	60.5 Hz	60.5 – 63.0 Hz	
			0.16 Seconds	0.033-0.50 Seconds	

¹ Adjusted to 120VAC nominal

Adjusted to 120VA	1C nominai
Nominal Power	Factor (Range, if adjustable) 0.9 and above with "add-on" capacitors
Non Islanding:	Yes No _X_ Maximum trip time:
Non Export:	Yes No <u>X</u> Method:
Other ^{viii} :	

⁺ Uses natural gas engine to bring to speed, * Induction Machine,

NOTES

i

List appropriate functions, capabilities, applications, limitations, etc. Use additional sheets as necessary.

List all test documents (i.e. UL 1741, IEEE C62.45)and specific procedures (i.e. .UL 1741 Sec 39.1 – 39.5, etc.) used to evaluate device's suitability for utility interconnection

^v kW, kVA, V, A, etc as appropriate

For devices that use grid power to motor to speed

Trip value (Voltage in volts or frequency in Hz) and timing (in cycles). Devices with adjustable settings shall provide test results over the range of settings. For each test setting provide the setting values in the upper box and measured results in the lower box. List device ranges, if adjustable.

Provide any additional information that may be useful in evaluating these results such as test configurations, device settings used to meet requirements, etc. Use additional sheets if necessary

Accreditation must apply to test standards listed herein

Note here the date of certification, applicable serial number (range or first in series), or other information that indicates which units the certification applies to.